Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biol. Res ; 49: 1-11, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950864

ABSTRACT

BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.


Subject(s)
Animals , Mice , Seaweed/chemistry , Plant Extracts/pharmacology , 3T3-L1 Cells/drug effects , Chlorella vulgaris/chemistry , Time Factors , Down-Regulation , Gene Expression , Cell Differentiation/drug effects , Up-Regulation , Cell Survival/drug effects , Cells, Cultured , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , 3T3-L1 Cells/physiology , PPAR gamma/analysis , PPAR gamma/drug effects , PPAR gamma/metabolism , Diabetes Mellitus, Type 2/metabolism , Adiponectin/analysis , Adiponectin/metabolism , Glucose Transporter Type 4/analysis , Glucose Transporter Type 4/drug effects , Glucose Transporter Type 4/metabolism , AMP-Activated Protein Kinases/analysis , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism
2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 263-268, 2015.
Article in Chinese | WPRIM | ID: wpr-672928

ABSTRACT

Objective: To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline (TG) for reducing the H2O2 induced toxicity in H9c2 cells. Methods: Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit. RNA extraction and cDNA synthesized according to the kit manufacture protocol. Apoptosis was measured by the Flowcytometry, general PCR and qPCR. Results: It was found that the TG significantly rescued the morphology of the H9c2 cells. Treatment of cells with TG attenuated H2O2 induced cell deaths and improved the antioxidant activity. In addition, TG regulated the apoptotic gene caspase-3, caspase-9 and anti-apoptotic gene Bcl-2, Bcl-XL during H2O2 induced oxidative stress in H9c2 cells. These results were comparable with quercetin treatment. For evident, flow cytometer results also confirmed the TG significantly reduced the H2O2 induced necrosis and apoptosis in H9c2 cells. However, further increment of TG concentration against H2O2 could induce the necrosis and apoptosis along with H2O2. Conclusions: It is suggested that less than 125 μM of TG could protect the cells from H2O2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression. Therefore, we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.

3.
Pakistan Journal of Pharmaceutical Sciences. 2014; 27 (6): 1911-1917
in English | IMEMR | ID: emr-148837

ABSTRACT

Cyathula prostrata [Linn] Blume herbs are commonly used for the treatment of inflammatory and pain in Nigeria. The objective of the present study was to assess the antitumor and antioxidant activity of Cyathula prostrate [Linn] Blume in mice model. The treatment of Dalton's lymphoma ascites cells induced tumor by the methanolic extract of Cyathula prostrata was determined at concentration of 100 mg/kg body weight given orally for 11 days, antitumor activity was assessed by monitoring the mean survival time, body weight, effect on hematological parameters, antioxidant enzyme levels and histopathological evidence. The results showed that the methanolic extract of Cyathula prostrata increased the survival period of animals, decreased the body weight and also altered many hematological markers and also restored the antioxidant enzymes when compared to the mice of the DLA control group. These findings indicate that the methanolic extract of C. prostrata has anti-tumor activity by preventing the lipid peroxidation and thereby promoting the antioxidant systems in Dalton's lymphoma ascites induced mice. So, these extract could be a natural anticancer agent for human health


Subject(s)
Animals, Laboratory , Lymphoma , Mice , Antineoplastic Agents , Models, Animal , Antioxidants , Ascites
4.
Asian Pacific Journal of Tropical Medicine ; (12): 20-26, 2013.
Article in English | WPRIM | ID: wpr-820573

ABSTRACT

OBJECTIVE@#To elucidate free radical scavenging activity of ethanolic extract Lagenaria siceraria (L. siceraria) (Molina) fruit.@*METHODS@#The free radical scavenging activity of the L. siceraria (Molina) fruit extract was assayed by using α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,20-azinobis 3-ethyl benzothiazoline-6-sulfonate (ABTS), FRAP, reducing power, chelating ability and β-carotene bleaching assay.@*RESULTS@#The IC(50) values of DPPH and ABTS radical-scavenging activity was found to be 1.95 mg/mL and 19 mg/mL, respectively. In ferrous chelation assay, the percentage of inhibition was found to be 89.21%. The reducing power of ethanolic extract of L. siceraria (Molina) fruit was 0.068 at 1 mg/mL and increased to 0.192 at 5 mg/mL. The β-carotene linoleate bleaching assay was 46.7% at 5 mg/mL and antioxidant activity using FRAP at 0.305 for 1 mg/mL to 0.969 for 5 mg/mL.@*CONCLUSIONS@#The results indicate that L. siceraria (Molina) fruit could be an important sources of natural radical scavengers.


Subject(s)
Antioxidants , Chemistry , Pharmacology , Benzothiazoles , Biphenyl Compounds , Cucurbitaceae , Chemistry , Fruit , Chemistry , Iron Chelating Agents , Chemistry , Pharmacology , Oxidation-Reduction , Picrates , Plant Extracts , Chemistry , Pharmacology , Sulfonic Acids , Thiazoles , beta Carotene , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL